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Binocular rivalry, brain stimulation 
and bipolar disorder

Trung T. Ngo, Wendy N. Barsdell, Phillip C. F. Law 
and Steven M. Miller*
Monash University, Melbourne

Mechanistic understanding of binocular rivalry (BR) has drawn upon psy-
chophysical, electrophysiological and brain-imaging studies. The first brain 
stimulation approach occurred in the late 1990s and assessed a new mechanistic 
proposal, the interhemispheric switch (IHS) hypothesis. Both caloric vestibular 
stimulation (CVS) and transcranial magnetic stimulation (TMS) modulated 
rivalry predominance when applied unilaterally. We describe the IHS model, 
its genesis and the brain stimulation evidence on which it rests. We also review 
more recent CVS and TMS rivalry studies, and discuss the findings of slow BR 
in bipolar disorder (BD) and genetic contribution to individual variation in 
BR rate. Finally, we describe a recent Drosophila model that can shed light on 
genetic, molecular and neurophysiological aspects of both BR and BD.

Rivalry mechanisms: A tale of two levels

Several centuries ago, scholars sought to understand what happens in the brain when 
different, overlapping signals are received by the two eyes (see chapter by Wade & 
Ngo, this volume). Since then, binocular rivalry (BR) induced by dichoptic stimula-
tion has been extensively researched and has been complemented by examination 
of dioptic (normal viewing) presentation of well-known forms of ambiguous-figure 
rivalry (AFR; e.g., the Necker cube) and other two-dimensional bistable perceptual 
stimuli (e.g., structure-from-motion [SFM] rotating sphere). As has been described 
in detail elsewhere (Leopold & Logothetis, 1999; Miller, Ngo, & van Swinderen, 
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2012; Ngo, Liu, Tilley, Pettigrew, & Miller, 2008; see also chapter by Brascamp & 
Baker, this volume), evidence is accumulating for at least some degree of shared 
neural mechanism between BR and these other types of perceptual rivalry.

Since Hering and Helmholtz, there has been debate over whether BR is a low-
level sensory competition phenomenon, or one based on high-level attentional 
competition (see chapter by Wade & Ngo, this volume). Early mechanistic theories 
of BR and AFR proposed that the perceptual alternations involved a reciprocal 
relationship between neuronal activity representing the dominant image and that 
representing the suppressed image (see also chapters by Sengpiel, Sterzer, and 
Wilson, this volume). On this account, perceptual dominance of one stimulus 
leads to adaptation of its neuronal representation until activity representing the 
other stimulus sufficiently recovers from adaption, thereby initiating a perceptual 
switch, and so on. Subsequent psychophysical evidence was relied upon for 
proposing that BR involves reciprocal inhibition between separate monocular 
channel neurons responsive to one, but not the other, eye (Blake, 1989). However, 
in contrast, electrophysiological studies in awake, behaving monkeys (Leopold 
& Logothetis, 1996; Logothetis & Schall, 1989; Sheinberg & Logothetis, 1997; 
reviewed in Logothetis, 1998; Logothetis, Leopold, & Sheinberg, 2003) showed 
that single-unit activity of monocular neurons bore little relationship to the 
monkeys’ rivalrous perceptions (see also chapter by Sengpiel, this volume). 
Although 18% of tested V1 neurons did show perception-dependent activity, all 
but one of these neurons were binocular (i.e., responsive to input from either 
eye). As the investigators progressed through the visual processing hierarchy, 
they found greater percentages of perception-dependent units, until reaching the 
inferotemporal cortex and superior temporal sulcus where ~90% of recorded cells 
demonstrated activity that correlated with the monkeys’ perceptual reports. 

This electrophysiological data conflicted with subsequent human fMRI studies 
(see chapter by Sterzer, this volume) that showed activity in V1 (Lee & Blake, 
2002; Polonsky, Blake, Braun, & Heeger, 2000; Tong & Engel, 2001; Wunderlich, 
Schneider, & Kastner, 2005) and LGN (Haynes, Deichmann, & Rees, 2005; 
Wunderlich et al., 2005) covaried with the dominance and suppression phases 
during BR. Middle ground was therefore found in the form of an ‘amalgam’ view 
of BR (Blake & Logothetis, 2002), in which the phenomenon was seen to result 
from a series of processes at multiple levels in the visual pathway. Most recently, 
there have been yet further contradictory mechanistic studies. Keliris, Logothetis 
and Tolias (2010) reported that during binocular flash suppression in awake 
primates, V1 perception-dependent spiking activity (again in 20% of units tested) 
occurred equally in binocular and monocular neurons, thus in contrast to the 
original report with BR by Leopold and Logothetis (1996). However, Keliris et 
al. (2010) also reported weaker V1 local field potential (LFP) modulations than 
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those seen in higher areas, and could not rule out the possibility that they were the 
result of modulatory top-down input (see chapter by Sengpiel, this volume). There 
is now also, remarkably, report of perception-dependent neural activity (both 
neuronal discharges and power modulation of high-frequency LFPs) in macaque 
lateral prefrontal cortex during binocular flash suppression (Panagiotaropoulos, 
Deco, Kapoor, & Logothetis, 2012).

As the above electrophysiological and brain-imaging evidence demonstrates, 
and as the psychophysical evidence reviewed by Brascamp and Baker (this 
volume) and Bressler, Denison and Silver (this volume) similarly demonstrates, 
mechanistic understanding of BR has exhibited a point-counterpoint history. This 
has been particularly so with respect to whether the phenomenon is mediated 
by low- or high-level mechanisms. Perhaps not surprisingly, given suggestions 
of common mechanistic processes underlying BR and AFR, the BR amalgam 
view has been mirrored by a ‘hybrid’ model of AFR (Long & Toppino, 2004). 
This hybrid model consists of a conceptual, multi-level framework (i.e., from 
low- to high-level: parallel feature-extraction channels, intermediate processing 
and representation, higher-order global operations) to account for the wealth of 
conflicting sensory (low-level) and cognitive (high-level) evidence in AFR studies. 

Consistent with this pendulous history (Blake, 2001), the amalgam view of 
BR and corresponding hybrid view of AFR now acknowledge a role for processing 
at multiple stages in the visual hierarchy, and indeed even in non-visual areas 
concerning attention, behavior and decision-making. Whilst this consensus view 
brings perspective to low-level and high-level views of rivalry, there remains 
debate over the relevance of processing at each level (discussed in Ngo, Liu, Tilley, 
Pettigrew, & Miller, 2007). Moreover, too ready an acknowledgement of multi-
level processing during rivalry could stifle proposals for more specific mechanistic 
clarification across and within levels.

The interhemispheric switch (IHS) model of rivalry

We previously proposed a specific high-level mechanistic model of BR and AFR 
(Miller et al., 2000) – the interhemispheric switch (IHS) model. This model is not 
inconsistent with the notion of multi-level processing, but has at its mechanistic 
core, a high-level process in which the attentional resources within each cerebral 
hemisphere act independently and in alternation. On this view, the perceptual 
switching that characterizes rivalry correlates with a process of alternating hemi-
spheric activation, i.e., interhemispheric switching. The evidence garnered in sup-
port of the IHS model, and a range of issues raised therein, has been reviewed 
in detail elsewhere (Miller, 2001; Miller & Ngo, 2007; Miller et al., 2012; Ngo et 



© 2013. John Benjamins Publishing Company
All rights reserved

214	 Trung T. Ngo, Wendy N. Barsdell, Phillip C. F. Law and Steven M. Miller

al., 2007, 2008; Pettigrew, 2001). Here, the genesis and key aspects of the model 
are discussed, and an updated commentary on its status is provided in light of 
recent developments in both rivalry research and comparative studies of inter-
hemispheric switching. 

The IHS hypothesis arose from the conjunction of separate lines of thinking 
by Pettigrew and Miller in the late 1990s (see Figure 1). Pettigrew, Collin and 
Ott (1999) had observed independent eye movement patterns in a small fish, 
the sandlance, and because this animal has completely crossed eye–hemisphere 
pathways, they reasoned that the alternating eye movements must be driven 
by an IHS process. Inspired by this observation, by Ramachandran’s (1994) 
proposal regarding complementary (lateralized) cognitive styles of the cerebral 
hemispheres, and by a desire to examine neural mechanisms of the psychiatric 
condition, bipolar disorder (BD; manic depression), Pettigrew sought to identify 
an IHS process in humans that would help explain the extreme mood swings of 
BD. On this background, Miller proposed that BR could be exactly the sort of 
IHS process that Pettigrew was seeking to identify in humans. Miller’s proposal 
was based on the convergence of three factors: (i) rivalry had been considered 
fundamentally attentional in nature (Helmholtz 1867/1925; see also Brascamp 
& Blake, 2012; Ling & Blake, 2012; Zhang, Jamison, Engel, He, & He, 2011; and 
chapters by Wade & Ngo and Bressler et al., this volume, and below), (ii) split-brain 
studies showed that the cerebral hemispheres are able to independently draw on 
attentional resources (Luck, Hillyard, Mangun, & Gazzaniga, 1989; see also Alvarez 
& Cavanagh, 2005; Alvarez, Gill, & Cavanagh, 2012), and (iii) hemispherectomy 
studies (removal of an entire cerebral hemisphere) showed that the remaining 
single hemisphere is able to sustain a coherent visual percept (Bogen et al., 1998; 
see also Bogen, 2000). Thus, Pettigrew and Miller proposed a rivalry model in 
which an IHS drives the perceptual alternations, with high-level regions in each 
hemisphere representing one, but not the other, rivaling percept. 

To test their model, Miller reasoned that if each cerebral hemisphere medi-
ated perception of one, but not the other, image during rivalry, then preferentially 
activating one hemisphere should alter the relative time spent perceiving each 
image (predominance). He therefore hypothesized that the unilateral cortical 
activation properties of caloric vestibular stimulation (CVS), as had been used 
by Ramachandran (1994) in developing his cognitive style proposals, would alter 
perceptual predominance during rivalry if an IHS process indeed mediated the 
phenomenon. The strategy of examining the IHS model by unilateral brain stimu-
lation was further bolstered by Pettigrew’s hypothesis that transcranial magnetic 
stimulation (TMS) applied in this way should also alter predominance during BR. 
TMS was a relatively nascent technique in the late 1990s but is now in widespread 
use in the cognitive and clinical sciences. The technique is described in detail in 
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the chapter by Thomson and Fitzgerald (this volume). Below, we briefly review the 
CVS technique including the range of its neural and phenomenological effects, 
before describing results of the ensuing CVS and TMS studies of rivalry. Thereafter 
we turn to an unexpected finding encountered when Pettigrew and Miller com-
menced examination of the IHS model, one that enabled the linking of the notion 
of an IHS mechanism to the clinical condition, BD. 

CVS technique overview

CVS is a commonly used technique for testing vestibular functioning and brain 
death. It involves slowly irrigating the ear with cold (or warm) water while the 
subject’s head is reclined, to induce vertigo and nystagmus. Although CVS has 
primarily been used for clinical diagnostic purposes in the past century, in recent 
decades it has been applied to the examination of a wide range of cognitive and 
clinical phenomena such as attention, somatosensory representation, memory, 
mood, and pain. Several brain-imaging studies have shown that the technique 
consistently activates a network of structures known to be involved in mediat-
ing such phenomena, in addition to vestibular processing. CVS administration 
with cold water induces activation of cortical structures in the contralateral hemi-
sphere, including anterior cingulate cortex, posterior insular and retroinsular cor-
tices, temporoparietal junction, somatosensory area SII, inferior parietal lobule, 
parietal operculum and superior temporal gyrus (reviewed in Been, Ngo, Miller, & 
Fitzgerald, 2007; Lopez, Blanke, & Mast, 2012; Miller & Ngo, 2007; zu Eulenburg, 
Caspers, Roski, & Eickhoff, 2012). Figure 2a depicts the CVS technique and the 
key brain regions it activates.

In accordance with such activation, administration of CVS has the ability 
to modulate attentional disorders such as unilateral neglect following right-
hemisphere lesions (Figure 2b), along with modulation of related conditions 
including anosognosia (denial of disease), somatoparaphrenia (bizarre beliefs), 
macrosomatognosia (misperception of body part size) and hemianesthesia 
(Bottini et al., 2005; Chokron, Dupierrix, Tabert, & Bartolomeo, 2007; Rode et 
al., 2012; Rossetti & Rode, 2002). CVS appears also able to modulate the manic 
phase of BD (Dodson, 2004; Levine et al., 2012; see also Pettigrew & Miller, 1998) 
(Figure 2c), as well as a variety of persistent pain disorders (André, Martinet, 
Paysant, Beis, & Le Chapelain, 2001; Kolev, 1990; Le Chapelain, Beis, Paysant, 
& André, 2001; McGeoch & Ramachandran, 2008; McGeoch, Williams, Lee, & 
Ramachandran, 2008; McGeoch et al., 2009). In healthy subjects CVS has been 
shown to affect a wide range of cognitive functions including spatial perception 
and localization (Karnath, 1994; Karnath, Fetter, & Dichigans, 1996; Karnath, 
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Figure 2.  (a) The CVS technique. Irrigation of cold water with the head reclined 
activates, via the semicircular canals and vestibular pathways, contralateral cortical 
structures implicated in attentional and mood processing. These structures include the 
anterior cingulate cortex (ACC), insular cortex (not depicted) and various temporo-
parietal areas (TPA). (b) CVS temporarily ameliorates left-sided attentional neglect 
following right-sided damage, as depicted by drawing of a complete clock face following 
the procedure. (c) Pettigrew and Miller’s (1998) sticky switch model of BD predicted that 
right-hemisphere activation (via left-ear CVS) would alleviate the signs and symptoms 
of mania by restoring toward normal the greater relative left-hemisphere activation 
asymmetry associated with mania (Blumberg et al., 2000). This therapeutic effect was 
verified in a case study by Dodson (2004), as depicted by a dramatic reduction in the 
patient’s Young Mania Rating Scale (YMRS) score following the procedure.
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Himmelbach, & Perenin, 2003; Karnath, Sievering, & Fetter, 1994; Schmäl, Kunz, 
& Stoll, 2000), spatial and verbal memory (Bächtold et al., 2001), auditory space 
perception (Lewald & Karnath, 2000), visual imagery (Mast, Merfeld, & Kosslyn, 
2006), tactile perception (Ferrè, Bottini, & Haggard, 2012; Ferrè, Bottini, Iannetti, 
& Haggard, 2013; Ferrè, Sedda, Gandola, & Bottini, 2011; Lopez, Schreyer, Preuss, 
& Mast, 2012), and positively biased beliefs (McKay et al., in press). Below we 
summarize a large series of studies we previously conducted in healthy controls, 
which demonstrated the ability of CVS to modulate perception during both BR 
and AFR. We then discuss more recent CVS studies and go on to review both 
earlier and recent TMS studies of rivalry.

Review of brain stimulation studies of rivalry

CVS and predominance modulation 

In accordance with the predictions of the IHS model, unilateral CVS was found 
to modulate perceptual predominance during BR with drifting vertical and hori-
zontal gratings, at least with respect to left-hemisphere activation (Miller et al., 
2000; see Figure 3a). Hence, on an IHS interpretation, by activating attentional 
regions in the left hemisphere relative to the right, subjects spent more relative 
time perceiving the left hemisphere’s image (though exactly which image that was 
could vary between individuals; see below). This result was difficult to interpret 
on models of rivalry that did not involve separate distribution of the two images, 
one to each hemisphere. However, an alternative explanation was that residual eye 
movements from the CVS-induced nystagmus would differentially affect percep-
tion of the horizontal and vertical gratings. Hence, we next repeated the experi-
ment using orthogonal stationary oblique gratings to induce BR, thus excluding 
such eye movement interpretations. The same CVS-induced predominance shifts 
were demonstrated (Miller et al., 2000). 

Ngo subsequently applied CVS to (i) Necker-cube rivalry (Miller et al., 2000), 
(ii) Rubin’s vase-faces illusion (Ngo et al., 2008), and (iii) the grouped percepts 
during coherence rivalry (Ngo et al., 2007; see also below, Figure 3 in this 
chapter, and Figure 2 in chapter by Miller, this volume), again finding significant 
predominance modulation from left-hemisphere CVS in each case. Moreover, in 
all five experiments, the same asymmetry of CVS effects was observed (i.e., left-
hemisphere but not right-hemisphere activation induced a significant predominance 
change). This asymmetry in the ability of CVS to modulate predominance during 
rivalry was interpreted (Miller et al., 2000) in terms of a previously demonstrated 
hemispheric asymmetry during BR (in which a right-lateralized fronto-parietal 
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region was active during perceptual transitions; Lumer, Friston, & Rees, 1998; 
see also chapter by Sterzer, this volume). Exactly why right-lateralized transition-
related processing would mitigate CVS-induced predominance change is not clear, 
however hemispheric asymmetries relevant to rivalry dynamics have also recently 
been demonstrated with TMS applied to parietal regions (see below).

Thus, the ability of CVS to modulate predominance during perceptual rivalry 
contributes to evidence in support of (i) the IHS model, (ii) the relevance of 
attentional processing to perceptual rivalry, and (iii) structural overlap in the 
processing of apparently disparate functions such as vision, mood and pain (Miller 
& Ngo, 2007). However, in all of the above CVS rivalry experiments, it was clear 
the technique did not modulate rivalry in every subject tested (Miller et al., 2000; 
Ngo et al., 2007, 2008). Indeed, in two subsequent experiments, no significant 
group effects of predominance modulation were found following CVS (i.e., from 
either left- or right-hemisphere activation) (Ngo et al., 2007; Ngo, Blomberg, Liu, 
Pettigrew, & Miller, submitted).

The first of these experiments reported that CVS did not cause significant 
changes in predominance between the half-field percepts during multistable BR 
(Figure 3b). Multistable BR involves alternations between four different percepts: 
the two presented images (half-field rivalry) and two coherent images (coherence 
rivalry). Coherence rivalry is a phenomenon in which the brain synthesizes 
coherent aspects of each eye’s image into coherent percepts with which to rival. 
First reported by Towne (1863) and then Díaz-Caneja (1928), this phenomenon 
attracted attention more recently through the work of Kovács, Papathomas, Yang 
and Fehér (1996), and was taken as evidence for rivaling stimulus representations 
rather than rivaling eyes during BR. In another study, stimulus representation 
rivalry was also supported by subjects reporting smooth and slow perceptual 
alternations during rivalry, despite the stimuli being rapidly swapped between 
the eyes (Logothetis, Leopold, & Sheinberg, 1996; so-called ‘flicker-and-swap’ 
rivalry). Ngo, Liu, Miller and Pettigrew (2000) showed that with Díaz-Caneja 
stimuli, coherent percepts occurred for around half the viewing time while half-
field percepts (the same as those presented to each eye) occupied the remaining 
half (with some degree of individual variation in this temporal aspect). With this 
finding, and that of CVS modulating predominance of the coherent percepts, 
but not of the half-field percepts, Ngo and Miller (Ngo et al., 2007) developed a 
meta-rivalry model to explain interocular-grouping during rivalry (which may 
also extend to flicker-and-swap rivalry). This meta-rivalry model postulated that: 
(i) coherence rivalry occurs at a high level on an interhemispheric basis, (ii) half-
field rivalry occurs at a low level on an intrahemispheric basis, and (iii) high-level 
stimulus rivalry and low-level eye rivalry themselves rival (i.e., meta-rivalry) for 
access to visual consciousness (see Figure 3b). 
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The second study in which CVS did not induce significant group predominance 
changes (Ngo et al., submitted) set out to investigate two aspects of the previous 
CVS data: (i) which hemisphere selects which percept during rivalry, and on what 
basis, and (ii) what the re-test reliability of CVS effects are, both generally and 
with respect to percept-to-hemisphere selection. To meet these objectives, Ngo 
employed a novel repeated-measures design involving multiple left-hemisphere 
CVS sessions within the same subjects, using three rivalry types: drifting horizon-
tal/vertical BR, stationary oblique BR, and Necker-cube rivalry. Reproducibility of 
significant predominance change following CVS was found to be low both across 
the group and within individuals. Reproducibility was also low for the magnitude 
and direction of predominance changes. The substantial study-design differences in 
this experiment compared with the previous CVS rivalry studies may explain these 
negative findings, with possible habituation effects from repeated CVS. Further 
analyses of that data, based on such methodological considerations but limited by 
the consequent relatively low sample sizes, also revealed no significant group pre-
dominance change following CVS in any of the rivalry types (Ngo et al., submitted). 
Moreover, the negative findings made assessment of percept-to-hemisphere selec-
tion issues difficult, but scrutiny of group and individual data suggested that there 
was no apparent predilection for predominance to change in one or the other 
direction for any rivalry type. Interpreting the existing collection of CVS studies is 
discussed further below when the current status of the IHS model is considered.

Single-pulse TMS and perceptual disruption

Unlike CVS which induces relatively long-lasting unilateral hemisphere activa-
tion (approx. 10–15 min duration), and activates a wide network of inter-related 
cortical areas, single-pulse TMS (spTMS) induces short-term changes in brain 
activation in a more localized manner (though with possible secondary effects on 
connected neuronal populations). In the first application of the TMS technique to 
the study of rivalry (Miller et al., 2000), spTMS was delivered to temporo-parietal 
regions of the left hemisphere (given the CVS experiments’ significant results with 
activation of this hemisphere), and caused disruption of underlying cortical activ-
ity. Therefore the key prediction for this experiment, on an IHS model, was that a 
TMS pulse timed to be delivered on a switch to one percept (the left hemisphere’s 
percept, which could vary between individuals) would disrupt that percept, but 
that the same pulse (delivered at the same left hemisphere site) would have no 
effect when timed to occur on a switch to the other (the right hemisphere’s) per-
cept. Exactly this phase-specific pattern of spTMS effects was observed (Miller et 
al., 2000; see Figure 4). 
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As might be expected, the predominance modulation observed in this origi-
nal TMS experiment was far more dramatic than that seen in CVS experiments. 
The effect of CVS was visible in plotted frequency histograms of perceptual inter-
val durations with (i) predominance induced where there was previously none, 
(ii)  equalising of a previous predominance, or (iii) a previous predominance 
reversing its direction. However, the shape of the TMS frequency histograms on 
the other hand, reflected the immediate disruption of perceptual periods, i.e., 
causing very short percept durations for one of the rivaling images (see Figure 4). 
Moreover, as with the CVS experiments, the TMS data also revealed individual 
variation in response to stimulation. Two out of seven subjects did not exhibit 
the phase-specific perceptual disruption effects seen in the other five subjects. 
However, although the coil was always positioned broadly over temporo-parietal 
regions, there was no formal localization procedure employed, either stereotacti-
cally or with prior brain-imaging. Rather, the study’s methods involved approxi-
mate positioning of the coil in temporo-parietal regions initially, followed by more 
detailed positioning based on trial and error (with the subject’s verbal report of 
a disruption effect indicating the site for coil positioning for that subject’s testing 
session). Whether non-responders would have showed an effect under more pre-
cise localization procedures is not clear. One aspect of this study that is clear how-
ever, is that the phase-specific effect could not be attributable to noise or motor 
artefacts, because for each subject, all aspects of the stimulation were held constant 
(cortical site, intensity, noise, motor artefact etc), with the only difference being 
the response-contingency triggering the TMS pulse.

The initial TMS rivalry study did not systematically investigate the effect of 
spTMS applied to right-sided temporo-parietal regions. Rather, as mentioned 
above, it concentrated on the left hemisphere due to the CVS experiments’ signifi-
cant results for this hemisphere. However, a few right-hemisphere pilot TMS ses-
sions were conducted (data not reported in Miller et al., 2000), generally without 
phase-specific disruptions being observed. This mirrored the asymmetry seen in 
CVS experiments as described above. These CVS and TMS experimental asym-
metries indicated that simple predictions of the IHS model – i.e., of equal and 
opposite effects from left- and right-hemisphere stimulation or disruption – were 
not observed, and hence that the relative hemispheric contributions to rivalry may 
be complex. Indeed, hemispheric asymmetries would a decade later be a feature of 
a series of studies on the effects on rivalry of repetitive TMS (rTMS), as discussed 
in the next section.

In a follow-up spTMS study, Funk and Pettigrew (2003) sought to examine 
whether the IHS model of BR and AFR also applied to another phenomenon that 
involved periodic appearance and disappearance phases – motion-induced blind-
ness (MIB; Bonneh, Cooperman, & Sagi, 2001). As well as setting out to address 
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that issue, they sought to examine whether perceptual disruption effects could in 
fact be elicited with right-hemisphere TMS. Using a figure-of-eight coil deliver-
ing single pulses applied to the intraparietal sulcus (IPS) and superior parietal 
lobe (SPL), they employed two pulse-triggering conditions in the study. In one 
condition, as with the earlier study (Miller et al., 2000), the subject’s report of the 
start of a perceptual phase triggered the pulse. This showed that MIB, like BR, 
exhibits phase-specific perceptual disruption when TMS is applied over the left 
hemisphere, thus suggesting that MIB may also be an IHS phenomenon. However, 
the converse effect from right-hemisphere stimulation was again difficult to elicit. 
This led to testing a second condition in which the TMS pulse was timed to occur 
300 ms prior to an expected transition, with that expectation calculated according 
to baseline viewing (the period of MIB being relatively regular within individuals, 
as it is with BR). Although this timing strategy in effect yielded a TMS pulse that 
preceded, coincided with or followed a perceptual transition, the manipulation 
appeared to improve the ability of right-hemisphere parietal spTMS to induce 
phase-specific perceptual disruption (Funk & Pettigrew, 2003). 

The third (and only other) spTMS study of rivalry conducted to date is that 
by Pearson, Tadin and Blake (2007). These investigators used a figure-of-eight coil 
over V1 and V2 centrally (thus stimulating both occipital cortices), with pulses 
triggered automatically every 3.2 seconds. When subjects viewed conventional BR 
and with analyses removing any effects time-locked to a pulse, the overall effect 
was a small increase in switch rate (observed in 5 out of 6 subjects), thought to 
possibly be an effect of arousal due to the TMS. More interestingly however, when 
analyses did examine time-locked effects, there was shown to be a disproportion-
ately large number of perceptual switches that occurred following a TMS pulse 
(observed in all subjects). However, two important features of this effect were not 
reported: (i) whether the switch-inducing effect varied in a phase-specific manner 
as had occurred in previous studies (Funk & Pettigrew, 2003; Miller et al., 2000), 
and (ii) exactly what proportion of pulses were followed by a perceptual switch 
(discussed further below). Another main finding of Pearson et al.’s (2007) study 
was that there was a correlation between the time of onset of time-locked percep-
tual disruption effects and a subject’s rivalry rate. Further, a control condition in 
which stimulus contrast was varied to alter a subject’s rivalry rate showed that the 
TMS-induced modulation delay was linked to an individual’s endogenous switch 
rate because the delay was independent of the contrast manipulations. Other con-
trols employed in this study accounted for eye movements, auditory/tactile arte-
facts and transients that could potentially explain the data, though none of these 
factors were found to be relevant.

A further finding of the Pearson et al. (2007) study was that they repeated 
their protocol with flicker-and-swap rivalry. Under these stimulus conditions, as 
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described above, subjects reported perceiving smooth slow perceptual alternations 
rather than rapidly swapping images, indicating a likely high-level selection and 
stimulus representation process (Logothetis et al., 1996). When occipital TMS was 
applied during this rivalry type, the time-locked effects that the investigators had 
seen during conventional rivalry were not observed. This led Pearson et al. (2007) 
to argue that conventional rivalry and stimulus rivalry occur at discrete neural lev-
els (i.e., low and high levels, respectively). This finding was partly in keeping with 
the proposal by Ngo et al. (2007) that the coherent percepts during Díaz-Caneja 
stimuli viewing (another type of stimulus representation rivalry) and half-field 
percepts with the same stimuli, occurred at discrete neural levels (see above and 
also chapter by Bressler et al., this volume). Indeed, Ngo et al. (2007) specifically 
argued that flicker-and-swap rivalry, as used by Pearson et al. (2007), might simi-
larly engage the sort of meta-rivalry process proposed to mediate the perceptions 
with Díaz-Caneja stimuli and other interocular-grouping stimuli. However, Ngo et 
al. (2007) also maintained that conventional rivalry, in the absence of interocular-
grouping or flicker-and-swap conditions, occurs via a fundamentally high-level 
IHS process. Given the IHS model does engage the notion of multi-level process-
ing via feedback from high- to low-level regions (attentional selection mechanisms 
biasing pools of competing neurons; Miller, 2001), we consider it not entirely sur-
prising that TMS applied to such low-level pools could also modulate perception, 
increasing the probability of inducing a switch by affecting input to, or the effect 
of feedback from, the higher levels. Another possibility is that conventional rivalry 
itself engages a meta-rivalry process, though further TMS data would be needed to 
explore that proposal. A summary of existing single-pulse TMS studies of rivalry 
is presented in Table 1.

Repetitive TMS and rate modulation

If interpretation of CVS and single-pulse TMS studies of rivalry is hampered by 
conflicting data (which by now should not be surprising given similar conflict 
in electrophysiological, brain-imaging and psychophysical data), the results of 
applying rTMS to rivalry have been even further conflicting. We provide a sum-
mary in Table 1 of rTMS rivalry studies, the methodologies employed includ-
ing stimulation parameters and sites targeted, and the findings of each study. As 
noted in the chapter by Thomson and Fitzgerald (this volume), rTMS differs from 
spTMS in that repeated stimulation can progressively alter the activity of neuronal 
populations during the course of stimulation and for some time after its cessation. 
The technique has localized effects on the targeted brain regions and associated 
neuronal populations (like spTMS), with the perceptual outcome being partly 
dependent on the stimulation protocol that is employed (see below).
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As shown in Table 1, studies have focussed on rTMS of the SPL and found that 
depending on various methodological aspects, rivalry switch rate can be increased 
or decreased following rTMS, including with BR, an ambiguous SFM rotating 
sphere and a bistable spinning wheel illusion (SWI; which induces alternating 
directions of motion perception). Using the SWI, Iramina and colleagues (Ge, 
Ueno, & Iramina, 2007a, 2007b, 2008) focussed on the SPL based on findings 
from previous brain-imaging studies of rivalry (Lumer et al., 1998; Sterzer Russ, 
Preibisch, & Kleinschmidt, 2002). This work was the first of a series of experiments 
by this group, which are discussed in more detail below. 

Using a bistable SFM rotating sphere, Kanai, Bahrami and Rees (2010) 
examined the effect of rTMS on switch rate by targeting the posterior SPL. rTMS 
was applied in between periods of rivalry recording to left SPL and right SPL 
(with the vertex as control) in separate sessions using a continuous theta-burst 
stimulation protocol (i.e., 3 pulses at 50 Hz, every 200 ms for 40 s). Rivalry 
rate was found to be significantly slower following rTMS of either left or right 
SPL. Using structural brain-imaging and diffusion tensor imaging (DTI), this 
study also examined rivalry rate in relation to measures of cortical thickness, 
local grey matter density and local white matter integrity. Cortical thickness 
of bilateral SPL and bilateral post-central gyrus (but not any other brain area, 
including prefrontal regions) was found to be negatively correlated with percept 
duration, i.e., the thinner the cortex, the slower the switch rate. In relation to 
grey matter density and white matter integrity, bilateral SPL similarly showed this 
association with alternation rate. These brain-imaging findings suggested SPL 
structure could account for the wide inter-individual variation observed in rivalry 
rate. The authors also note the overlap of their identified relevant regions and 
those subserving attention and attention-switching functions, and consider the 
possibility that feedback from SPL to lower regions is the mechanism of influence 
(i.e., the larger the SPL, the stronger the feedback signal to switch and hence the 
faster the switch rate). The authors base their conclusions on an inhibition-based 
interpretation of their protocol.

In a follow-up study of rTMS on rivalry rate, Carmel, Walsh, Lavie and Rees 
(2010) used drifting BR stimuli to examine the effect of 1Hz pulses targeted at 
SPL. In contrast to the previous study (Kanai et al., 2010) however, they found that 
following rTMS of right SPL (cf. left SPL and no-TMS conditions), there was an 
increase in the rate of perceptual switches. The authors consider their stimulation 
protocol to be inhibitory and that the right SPL maintains a perceptual state (hence 
disrupting it leads to faster switch rate). The authors also provide an attention-based 
interpretation of their findings involving feedback from the right SPL to lower 
visual regions (i.e., impairing this maintenance function leads to a weaker top-
down signal, making it easier for the suppressed image to overcome suppression).
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Another study of rTMS effects on rivalry employed fMRI to first identify 
brain regions that were associated with the perceptual alternations (Zaretskaya, 
Thielscher, Logothetis, & Bartels, 2010). By comparing rivalry to replay activation 
scans, left and right SPL along with left and right anterior IPS were identified, with 
nine subjects showing right-lateralized activity during BR while six other subjects 
showed left-lateralized activity in these regions. In all subjects, 2Hz continuous 
rTMS was subsequently applied to these four parietal areas during BR viewing 
(with the vertex as control). TMS-induced inhibition of right IPS was found to 
significantly decrease rivalry rate, whereas no significant effect of left-sided TMS 
was found overall. However, when the TMS data were examined according to 
individual subject’s lateralized activation identified with fMRI, left-sided rTMS 
of IPS was also found to decrease rivalry rate. The investigators concluded that 
IPS, mainly in the right hemisphere, has a destabilizing function on perceptual 
continuity in BR, in accordance with its role in perceptual selection, including with 
respect to attention. They also note that their TMS data were consistent with Kanai 
et al.’s (2010) findings, despite the use of different rivalry types and stimulation 
protocols (i.e., online cf. offline rTMS). Other methodological differences (cf. 
Carmel et al., 2010; Kanai et al., 2010) that were highlighted included pulse 
frequency, duration of TMS, effect on cortical activity (i.e., facilitatory rather than 
disruptive; Carmel et al., 2010), small sample size (Carmel et al., 2010), and the 
lack of a vertex control condition (Carmel et al., 2010; i.e., not controlling for 
arousal with the no-TMS condition).

To resolve the conflicting findings concerning rTMS effects on switch rate 
between two previous studies mentioned above (Carmel et al., 2010; Kanai et 
al., 2010), Kanai, Carmel, Bahrami and Rees (2011) employed a more precise 
structural imaging approach to first identify sub-regions within right SPL for 
subsequent testing with TMS. Using a SFM rotating sphere, they found that grey 
matter density in right anterior SPL was positively correlated with switch rate, 
in contrast to their previous finding of the opposite association in posterior SPL 
(Kanai et al. 2010). They also showed that rTMS applied to anterior SPL (with the 
vertex as control) resulted in decreasing percept duration (i.e., faster switch rate), 
which was consistent with the findings of Carmel et al. (2010), but in contrast to 
those of Kanai et al. (2010) who targeted posterior SPL. These authors argued that 
the previous discrepant results were unlikely to be due to different neural bases 
for different forms of perceptual bistability or to dissimilar stimulation protocols. 
Rather, they considered the conflicting results as reflecting a fractionation of 
parietal cortex function, such that different regions within parietal cortex play 
opposing roles in the control of bistability. They also note that their findings are 
in contrast to Zaretskaya et al.’s (2010), who found that online rTMS applied to a 
region of SPL close to an area they targeted with offline rTMS, instead decreased 
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the rate of perceptual alternations, which could therefore be due to stimulation 
protocol differences between the studies. 

The issue of protocol differences when comparing results from TMS studies 
is complex (e.g., de Graaf & Sack, 2011; Sandrini, Umiltà, & Rusconi, 2011). As 
indicated in Table 1, it is not always clear whether a TMS protocol is excitatory 
or inhibitory, and as outlined in the chapter by Thomson and Fitzgerald (this 
volume), individuals vary in their response to TMS. Comparisons are further 
complicated by the fact that reference to, and interpretation on the basis of, 
differences in one methodological element may only be relevant if all other 
methodological elements are held constant in the studies compared, which is often 
not the case. These issues make interpretation of conflicting TMS studies difficult 
and indicate that further studies will be required to examine cortical contributions 
to rivalry and its modulation (see also chapter by Sterzer, this volume). Studies 
such as those by Kanai et al. (2011), in which rTMS protocol elements were held 
constant and only cortical targets were varied, and by Miller et al. (2000), in which 
cortical site was held constant and only response-contingency was varied, are 
particularly informative in light of the methodological and protocol interpretation 
complexities associated with perceptual TMS research. 

Another rTMS protocol issue that has been raised comes from studies using the 
SWI. Nojima et al. (2010a, 2010c, 2011a) examined the effect of differential rTMS 
protocols on SWI switch rate. These investigators applied rTMS trains varying 
in stimulation frequency and pulse number to the right SPL and right posterior 
temporal lobe. Pooling data reported in their previous studies (Ge et al., 2007b, 
2008), they found that 1 Hz 240-pulse rTMS to the right SPL (cf. right posterior 
temporal lobe TMS and no-TMS conditions) significantly decreased switch 
rate. In contrast, rTMS to the right SPL using 60-pulse protocols significantly 
increased switch rate, whereas no effects were observed with 120-pulse protocols. 
The investigators interpreted these differential pulse-based results on the basis 
of previously reported biphasic rTMS effects (i.e., activation of both facilitatory 
and inhibitory neurons), suggesting that the rTMS protocol which decreased 
switch rate indicated inhibition of brain activity, and vice versa. However, the 
very high degree of voluntary control that we observe to be exercised over the 
SWI suggests these findings require confirmation with types of rivalry that are 
less amenable to voluntary control. Indeed, direct exploration of the effect of TMS 
on voluntary control during rivalry is informative and was examined by de Graaf, 
de Jong, Goebel, van Ee and Sack (2011). These investigators assessed the role of 
frontal cortical areas (classically implicated in attentional processing) using a SFM 
rotating sphere. They found that right-hemisphere rTMS applied to dorsolateral 
prefrontal cortex, the posterior parietal cortex, occipital pole and hMT/V5 had no 
significant effect on switch rate during passive viewing, but when subjects were 
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asked to voluntarily speed up switch rate, rTMS to right dorsolateral prefrontal 
cortex significantly impaired this control. These findings led to the proposal that 
a specialized mechanism exists for voluntary control during bistable perception 
(cf. spontaneous alternations during passive viewing; see also chapter by Sterzer, 
this volume).

Status of the IHS model

The TMS data just described are illuminating with respect to the CVS data dis-
cussed earlier and the IHS model of rivalry. Although the initial series of CVS 
experiments provided support for the IHS model, all with an identical asymmetry 
of modulation effects, more recent CVS experiments did not find significant pre-
dominance changes. While perhaps due to design issues, and while the consistent 
asymmetry observed in the first series of experiments would be remarkable to 
have occurred by chance, it could be argued that support for the IHS model in 
light of the recent CVS negative findings is questionable. However, we point out 
that the history of BR and AFR research, particularly with respect to mechanisms, 
has been one of evidence-based claim and counter-claim, exhibited most dra-
matically in the last decade by the electrophysiological and brain-imaging find-
ings as discussed above (Blake & Logothetis, 2002; Keliris et al., 2010; Sterzer, 
Kleinschmidt, & Rees, 2009; Tong, Meng, & Blake, 2006). Similar conflicting data 
were evident in the recent series of rTMS studies of parietal cortex regions. It is 
thus hardly likely to expect a single experimental success or failure to conclusively 
resolve issues of perceptual rivalry mechanisms.

Moreover, the spTMS data showing a phase-specific perceptual disruption 
pattern cannot be explained on anything but an IHS model (which is perhaps why 
alternative explanations for this effect have not been forthcoming). In addition, 
the spTMS and rTMS data have shown, along with earlier brain-imaging findings, 
that the asymmetries observed in the early series of CVS experiments are very 
likely veridical, given the reports of asymmetries in the ability of left versus right-
hemisphere TMS to modulate rivalry. In our view, mechanistic understanding of 
rivalry will benefit from further detailed and targeted TMS studies, particularly 
using single-pulse, online, phase-specific protocols with pulses applied at various 
processing regions, including high and low levels, unilaterally and even bilaterally 
(i.e., two coils). Additional brain-stimulation techniques may also be employed in 
the future, such as intracranial stimulation during surgery in humans (Mukamel 
& Fried, 2012) and microstimulation in primates (see chapter by Sengpiel, this 
volume). Stimulation at multiple sites and combined stimulation/recording 
protocols may prove to be particularly informative. 
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There has to date been only one independent attempt to falsify the IHS model 
of rivalry, by examining BR in subjects with a split brain (O’Shea & Corballis, 
2001, 2003, 2005a, 2005b). These experiments showed that each disconnected 
hemisphere can experience its own rivalry (interestingly, at different rates), 
thus challenging the IHS model. However, this approach was not grounds for 
abandoning the IHS model, for several reasons that have been outlined in detail 
elsewhere (Miller, 2001; Ngo et al., 2007; Pettigrew, 2001). One such reason 
entailed Pettigrew and Miller’s specific prediction that rivalry would survive 
callosotomy (Miller et al., 2000) because the IHS process was considered to be 
driven by a subcortical oscillator and not by the corpus callosum. This notion 
of a subcortical oscillator was proposed by Pettigrew and elaborated upon in a 
subsequent paper (Pettigrew, 2001; see Figure 1). 

Miller’s elaboration of the IHS model on the other hand, focussed on 
attentional mechanisms. This included how a subcortical oscillator and/or top-
down activity might act, as mentioned above, via attentional processes that 
bias competition between populations of neurons, or response synchronization 
therein (Miller, 2001). He thus proposed that interhemispheric switching involves 
a process of alternating unihemispheric attentional selection. On this account, 
two further proposals included (i) an additional attention-based explanation 
for the asymmetry of CVS modulation effects, and (ii) the callosum not being 
entirely irrelevant to interhemispheric switching during rivalry. In relation to the 
latter, though inconsistent with the data from split-brain BR experiments, this is 
consistent with a report of slow AFR rate in subjects with callosal agenesis (Fagard 
et al., 2008). However, while studies have shown that aspects of bistable perception 
with the motion quartet and binocular rivalry are linked, respectively, to 
microstructural properties of specific callosal regions connecting human MT/V5 
(Genç, Bergmann, Singer, & Kohler, 2011) and V1 (Genç, Bergmann, Tong, Blake, 
Singer, & Kohler, 2011), such findings rely on the use of stimuli that dynamically 
integrate across the two visual hemifields. Callosal microstructural properties 
(other than agenesis) have not as yet been assessed with respect to small, central 
rivalry stimuli that do not engage dynamic cross-hemifield integration. Examining 
correlations of rivalry rate using small, central stimuli with structural and DTI 
measures of callosal regions connecting cortical attentional regions would be an 
informative line of future research for assessing the IHS model, the callosum’s 
role therein, and factors determining individual variation in rivalry rate (as has 
occurred for SPL; see above).

Also raised in Miller’s elaboration of the IHS model was the distinction 
between mechanisms of attentional selection and mechanisms of visual 
consciousness during rivalry, and between mechanisms of attentional selection 
and mechanisms of feature representation (or between the ‘sites’ and ‘sources’ 
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of attentional selection; Miller, 2001). By refining the notion of ‘alternating 
hemispheric activation’ to include the possibility of ‘alternating unihemispheric 
attentional selection’, and considering the distinction between neural mechanisms 
of attentional selection and those of visual consciousness, Miller (2001) noted 
that brain-imaging or electrophysiological data showing neural activity that is 
synchronous across the hemispheres would not necessarily argue against an IHS 
model. Rather, the key observation of interhemispheric switching during rivalry 
would be the presence of hemispherically asynchronous activity (even if in other 
cortical regions, hemispherically synchronous activity was observed). There have 
been suggestions of just such asynchronous activity in a number of brain-imaging 
studies with centrally located stimuli (Brouwer, Tong, Schwarzbach, & van Ee, 
2005; Freeman, Sterzer, & Driver, 2012; Hsu, Yeh, Tien, & Lin, 2008; Kamphuisen, 
Bauer, & van Ee, 2008), though without explicit reference to the IHS model. 
Alternating hemispheric activation has also been shown in a brain-imaging study 
using an AFR stimulus that was horizontally elongated across the two hemifields 
(Slotnick & Yantis, 2005), however this finding may be purely due to the hemifield 
aspect rather than alternating unihemispheric attentional selection. 

Most recently, direct electrophysiological evidence of an IHS mechanism 
underlying perceptual rivalry has been demonstrated in Drosophila (Tang & 
Juusola, 2010). This involved counterphase (left-right) alternations in unilateral 
optic lobe spiking and LFP activity, in accordance with the fly’s rivalry-like left-
right switching behavior during dichoptic presentation of orthogonally moving 
stimuli (see Figure 6). We return to this Drosophila model of rivalry in the last 
section.

On the issue of the status of the IHS model of rivalry, we have noted two 
recurring comments in the literature and in discussion with colleagues and other 
investigators. The first is that the IHS model appears unable to be tested. We 
argue quite the opposite, holding that instead the model is one of the most readily 
testable in the literature (e.g., see Miller, 2001; Ngo et al., 2007). Electrophysiology, 
brain-imaging and brain stimulation methods can all be applied to its examination, 
though some care needs to be taken in the procedures used and conclusions made, 
given the multitude of conceptual and methodological complexities detailed in 
this chapter and previous papers. The second common comment we encounter is 
that the model is unlikely. This is despite the fact that in recent years, comparative 
evidence for IHS phenomena has been steadily growing. 

In our view, biological IHS precedents make claims of the unlikelihood of the 
IHS model of rivalry less defensible. Indeed, the existing and emerging human and 
animal IHS literature raises an important conceptual and methodological issue: 
is interhemispheric switching a generally under-investigated neurophysiological 
principle in organisms with brain structures that are paired across the midline? 
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The list of biological IHS phenomena now includes: (i) slowly alternating 
unihemispheric activity in humans (Bemelmans, Heijdanus, Jansen, & Rietveld, 
1984; Shannahoff-Khalsa, Gillin, Yates, Schlosser, & Zawadzki, 2001; Werntz, 
Bickford, Bloom, & Shannahoff-Khalsa, 1983); (ii) alternations between relative 
left and right nasal patency (the nasal cycle) in humans and other species (Eccles, 
2000; Kikuta, Kashiwadani, & Mori, 2008; Sobel, Khan, Saltman, Sullivan, & 
Gabrieli, 1999); (iii) alternating unihemispheric EEG activity during REM sleep 
in humans (Imbach et al., 2012); (iv) alternating unihemispheric slow-wave sleep 
in birds and aquatic mammals (Fuchs, Maury, Moore, & Bingman, 2009; Low, 
Shank, Sejnowski, & Margoliash, 2008; Lyamin, Manger, Ridgway, Mukhametov, 
& Siegel, 2008; Rattenborg, Lima, & Amlaner, 1999); (v) independent alternating 
eye movements in the sandlance and chameleon (Pettigrew et al., 1999); 
(vi) birdsong production (Long & Fee, 2008; Wang, Herbst, Keller, & Hahnloser, 
2008); and (vii) alternations between left and right suprachiasmatic nucleus 
electrophysiological activity and Per mRNA expression in rodents (de la Iglesia, 
Meyer, Carpino, & Schwartz, 2000; Ohta Yamazaki, & McMahon, 2005; Schaap, 
Albus, Eilers, Détári, & Meijer, 2001; Yan, Foley, Bobula, Kriegsfeld, & Silver, 
2005). To this list can now be added, direct electrophysiological evidence for an 
IHS mechanism underlying perceptual rivalry in Drosophila (Tang & Juusola, 
2010; Miller et al., 2012). Thus we continue to argue for a multi-pronged 
attempt to examine the IHS model of human rivalry, employing brain-imaging, 
electrophysiological and brain stimulation methods, in the hope of arriving at its 
verification or falsification. 

Clinical, genetic and molecular aspects of rivalry 

On the first day of testing the IHS hypothesis with CVS, Pettigrew and Miller 
serendipitously observed that the rate of BR was notably slower in a subject with 
BD. They pursued this observation and confirmed in two studies (Miller et al., 
2003; Pettigrew & Miller, 1998) that BD was indeed associated with slow BR rate 
(Figure 5a). The slow BR finding was evident in BD subjects who were well at 
the time of testing, suggesting that it may represent a trait (as opposed to state) 
marker of the disorder. It also did not appear to reflect the type of medication 
being taken by the subject and in some cases was evident in un-medicated 
subjects. Slow BR rate was also not found in groups of subjects with schizophrenia 
or major depression, disorders which can often be difficult to distinguish from 
BD. On this basis, and given BD is known to be strongly heritable, Pettigrew 
and Miller proposed that slow BR rate may serve as a useful ‘endophenotype’ 
for BD (discussed further below). Consistent with their empirical findings, and 
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again supporting the notion of common neural mechanisms of BR and AFR, it 
was reported in the early 20th Century (Ewen, 1931; Hunt & Guilford, 1933), 
that Necker-cube rivalry was slower in BD (‘manic depression’) compared with 
controls and subjects with schizophrenia (‘dementia Praecox’). Since Pettigrew 
and Miller’s reports, there have been three independent replication studies of the 
basic finding of significantly slower rivalry rate in BD relative to controls, two 
using BR (Nagamine, Yoshino, Miyazaki, Takahashi, & Nomura, 2009; Vierck et 
al., 2013) and one using a bistable SFM rotating sphere (Krug, Brunskill, Scarna, 
Goodwin, & Parker, 2008). 

The finding of slow BR in BD was utilized by Pettigrew and Miller (1998) to 
propose a detailed pathophysiological model of BD (the ‘sticky switch’ model), 
that also incorporated the IHS model of rivalry. This BD model involved a series 
of conceptual postulates that are detailed in Figure 1. Through a mixture therefore, 
of observation, hypothesis, experimentation, serendipity and conceptual develop-
ment, Pettigrew and Miller were indeed able to link the notion of interhemispheric 
switching to the extreme mood alternations seen in BD. Their model entailed 
the notion of anterior hemispheric activation asymmetries underlying mania 
(greater relative left activation) and depression (greater relative right activation). 
The model also drew upon brain-imaging, hemisphere-inactivation, lesion, elec-
trophysiological and rTMS studies (e.g., see citations in Pettigrew & Miller, 1998), 
with the latter showing that right-hemisphere application was required to treat 
mania (Grisaru, Chudakov, Yaroslavsky, & Belmaker, 1998) while left-hemisphere 
application was required to treat depression (Pascual-Leone, Rubio, Pallardó, & 
Catalá, 1996). The model also explicitly predicted hemisphere-specific mood-
modulating effects from CVS, which have since been confirmed for mania, albeit 
in two case studies to date (Dodson, 2004; Levine et al., 2012).

Quite apart from aiding Pettigrew and Miller in their development of a BD 
pathophysiological model, the empirical finding of slow BR in BD has sparked 
renewed interest in the issue of individual variation in rivalry rate. It has long 
been known that rivalry rate exhibits wide individual variation but is relatively 
stable within individuals (e.g., Aafjes, Hueting, & Visser, 1966; Borsellino, de 
Marco, Allazetta, Rinesi, & Bartolini, 1972; Enoksson, 1963; Ewen, 1931; George, 
1936; McDougall, 1906) (see also chapter by Wade & Ngo, this volume). The AFR 
studies mentioned above show that in the first half of the 20th Century, individual 
variation in perceptual rivalry was investigated from a clinical psychiatric 
perspective (Ewen, 1931; Hunt & Guilford, 1933). However, there was relatively 
little interest in this line of research again until decades later. Similarly, until the 
1960s there was interest in examining individual variation in rivalry parameters 
(e.g., Bagby, 1957; Crain, 1961; Frederiksen & Guilford, 1934), but this approach 
waned thereafter (though with some interest in AFR with respect to psychiatric 
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conditions; e.g., Gorenstein, Mammato, & Sandy, 1989; Meldman, 1965). Most 
recently, and as described in detail above, the issue of individual variation in rivalry 
rate has been utilized in brain-imaging and rTMS studies. Thus, cortical thickness 
in SPL and other measures were shown to correlate with rivalry rate, while rTMS 
to this region modulated rivalry rate (Kanai et al., 2010). These authors also noted 
that cortical thinning of SPL had been shown in BD (Lyoo et al., 2006), consistent 
both with their findings and with the finding of slow BR in BD.

Again renewing interest in individual variation of BR rate, and to pursue 
investigation of the trait as a potential endophenotype for BD, a large twin 
study was embarked upon by Pettigrew and Miller in collaboration with genetic 
epidemiology researchers, Nick Martin and Margie Wright (Miller et al., 2010; 
Figure 5c, d, e, f). That approach sought to examine the heritability of individual 
variation in rivalry rate and found that additive genetic factors accounted for 
more than 50% of the variance in rivalry rate (with monozygotic twins, who have 
identical genotypes, showing significantly higher concordance of BR rates than 
dizygotic twins, who share only half of their genetic make-up). The remainder 
of the variance was accounted for by unique environmental factors (18%) and 
measurement unreliability (30%). This twin study involved a sample size of 722 
individuals and is the largest published population dataset of any rivalry type. It 
conclusively showed the previously-reported wide individual variation in BR rate, 
and further that an individual’s rate is very highly reliable within testing sessions 
(r = 0.93; N = 722) and highly reliable between tests, 2 years apart (r = 0.70; N = 97). 
This study was followed by a smaller twin study (Shannon, Patrick, Jiang, Bernat, 
& He, 2011) which confirmed the heritability finding for BR rate and reported a 
similar finding for AFR (with the Necker cube).

Figure 5.  (a) Slow BR rate in BD. The bars show the central tendency of BR rate for each 
group (medians in Pettigrew and Miller, 1998; means in Miller et al., 2003). These studies 
suggest that high-strength BR stimuli distinguish BD subjects from non-BD subjects better 
than lower-strength stimuli (s.f. = spatial frequency). (b) An ROC (receiver operating 
characteristic) curve of high- and lower-strength stimuli, generated from subjects’ data in 
Figure 5a with BD as ‘positive’ and controls, schizophrenia (SCZ) and major depressive 
disorder (MDD) as ‘negative’. The area under the curve (AUC) of 0.82 indicates that from 
random selection of a pair of subjects in Figure 5a, 82% of individuals would be correctly 
identified as a BD subject or a non-BD subject on the basis of their BR rate. A large-scale 
heritability study of BR (Miller et al., 2010) demonstrated the following: (c) monozygotic 
(MZ) vs dizygotic (DZ) twin correlations for BR rate were significant but not for other BR 
measures; (d) genetic modeling analyses indicated a substantial genetic contribution to 
individual variation in BR rate; (e) wide individual variation and very high within-session 
reliability of BR rate; and (f) high between-session (retest) reliability of BR rate.
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Demonstration of substantial genetic contribution to individual variation in 
BR rate adds support to the notion of using slow BR as an endophenotype for BD. 
Endophenotypes are biomarkers that are ‘intermediate’ between genotype and 
phenotype (reviewed in Gottesman & Gould, 2003; Gould & Gottesman, 2006; 
Hasler, Drevets, Gould, Gottesman, & Manji, 2006). They are useful in studies 
of complex genetic disorders, such as BD, because they can accurately mark an 
affected genotype even though the individual may not have yet manifested (or 
indeed, may never manifest) the clinical disorder. By improving the accuracy of 
classifying affected (at-risk) and unaffected (not at-risk) genotypes in this way, 
endophenoptypes can increase the power of genome-wide association studies 
which aim to identify disease-causing genes (Kendler & Neale, 2010). Toward 
this end, we and our genetic epidemiology and clinical psychiatry colleagues have 
recently established a multi-center study to collect BR data and DNA samples from 
several different subject groups (i.e., BD Type I, BD Type II, schizophrenia, major 
depressive disorder, relatives of bipolar probands, and healthy controls; Ngo, 
Mitchell, Martin, & Miller, 2011). By collecting BR data from large numbers of 
clinical psychiatric subjects, this multi-center study will also enable assessment of 
the potential diagnostic utility of slow BR rate, such as in distinguishing psychosis 
due to BD from that due to schizophrenia, and depression due to BD from that 
due to major depressive disorder (in both cases, with treatment implications; Ngo 
et al., 2011; see Figure 5b).

For a trait to be an endophenotype, it must meet key criteria (Gottesman 
& Gould, 2003; Kendler & Neale, 2010): (i) high association with the condition 
(high sensitivity), (ii) high heritability, (iii) high reliability, (iv) be unaffected 
by clinical state (and medication), (v) co-segregate with illness in families, and 
(vi) be observed in first-degree relatives of probands more commonly than in 
the general population. Our studies have shown that the BR rate trait appears to 
satisfy the first three criteria (Miller et al., 2003, 2010; Pettigrew & Miller, 1998). 
Our data, and work by others (Nagamine et al., 2009), also suggested that state and 
medication did not account for slow BR (see also Ngo et al., 2011) though these 
factors required further assessment.

In a recently published study, further independent evidence has been 
demonstrated for slow BR rate as an endophenotype for BD. In a large sample of 
96 BD subjects, Vierck et al. (2013) recorded BR rate, a range of clinical variables 
and several cognitive functioning measures. The BD subject group consisted of 
71 participants with BD-I, 22 with BD-II and 3 with BD-not otherwise specified 
(the latter two groups being collapsed into a bipolar spectrum disorder group). 
Compared to a small group of healthy controls (N = 24), the BD-I and bipolar 
spectrum disorder groups both had significantly slower BR rates, whereas there 
was no difference in BR rate between the two BD subgroups. Furthermore, it 
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was found that medication, depressive mood state, lifetime comorbid psychiatric 
diagnosis, and diminished cognitive functioning were not associated with slow BR 
rate in the BD subjects, and hence could not explain the trait. Ultimately however, 
testing BR rate in large numbers (i.e., hundreds to thousands) of clinical subjects, 
control subjects and family members is required to confirm the endophenotype 
criteria listed above (Ngo et al., 2011).

In addition to potential genetic and clinical psychiatric diagnostic utility, the 
findings of slow BR in BD and of genetic contribution to individual variation 
in BR rate, suggest new mechanistic approaches to investigating rivalry and 
its modulation. Thus, examining molecular aspects of BR will not only help 
to understand pharmacological modulation of the phenomenon, but also 
provide further mechanistic clues. It has been reported for example, that both 
noradrenergic and serotonergic systems are relevant to rivalry (Carter et al., 
2005; Einhäuser, Stout, Koch, & Carter, 2008; Nagamine, Yoshino, Miyazaki, 
Takahashi, & Nomura, 2008; see also Bressler et al., this volume). Indeed since 
then, the candidate gene approach has been applied to rivalry, in both visual and 
auditory domains, showing that serotonergic genes are relevant to the former 
and dopaminergic genes to the latter (Kondo et al., 2012). While these findings 
may not themselves reveal key mechanisms of rivalry, they provide pieces of the 
mechanistic puzzle that may ultimately be revealing. For instance, candidate genes 
shown to encode for particular neurotransmitter receptor systems may shed light 
on the role of particular subcortical, sensory and higher-level processing regions 
during rivalry.

Finally, one particularly promising approach to elucidating genetic and 
molecular aspects of both rivalry and BD is the Drosophila rivalry model mentioned 
above. Drosophila melanogaster has proven an immensely powerful tool for 
dissecting the genetic, molecular and neurophysiological aspects of development, 
memory, learning, circadian rhythms and attention, and can even shed light on 
neuropsychiatry (Bellen, Tong, & Tsuda, 2010; Miller et al., 2012; O’Kane, 2011; van 
Alphen & van Swinderen, 2013; van Swinderen, 2011). The existence of perceptual 
switching behavior in response to incongruent dichoptic visual stimulation in 
Drosophila (Figure 6), indeed switching behavior that exhibits individual variation 
in rate (Tang & Juusola, 2010), offers novel and exciting research strategies that 
we have recently outlined in detail (Miller et al., 2012). Thus fly rivalry can be 
compared to human rivalry, with a host of human rivalry characteristics examined 
for in the Drosophila model (e.g., temporal dynamics, stimulus factors, relationships 
with other cognitive functions such as memory and attention; see chapters by 
Brascamp & Baker and Bressler et al., this volume). The Drosophila model can also 
be used to explore neurophysiological aspects of rivalry, given its amenability to 
direct electrophysiological recording, pharmacological manipulation and emerging 
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methods such as photostimulation (optogenetics). Indeed, the model enables 
mechanistic aspects of rivalry to be probed at molecular, cellular and systems levels. 
Moreover, known genetic mutants such as the short/long circadian and behavioral 
courtship rhythm per variants, can be examined, with short/long rivalry intervals 
hypothesized, to examine the notion of period-coupled oscillators, as proposed by 
Pettigrew and Miller (1998; see Figure 1) to underlie the link between slow BR in 
BD and the alternating mood states of BD. Other known Drosophila mutant strains 
can also be screened for rivalry rate anomalies, with results potentially shedding 
light on both genetic aspects of rivalry and of BD. Utilization of Drosophila to 
examine attention-like rivalry and visual competition has commenced (Paulk, 
Millard, & van Swinderen, 2013; van Swinderen, 2012) with frequency-tagging 
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Figure 6.  Rivalry in Drosophila and its IHS electrophysiological basis. (a) A fly presented 
with dichoptic visual stimulation in a tethered flight setup displays rivalry-like orienting 
behavioral switches between the left and right competing stimuli, which are measured 
using a torque meter (not shown). Bilateral electrophysiological recordings from the fly’s 
optic lobes (b) revealed unilateral LFP activity preceded the switch towards the same side 
(while LFP activity on the opposite side was inhibited), and that this unilateral LFP activity 
exhibited left-right (interhemispheric) alternations in accordance with the fly’s switching 
behavior (reprinted from PLoS One, Tang & Juusola, 2010, 5, 12, e14455).



© 2013. John Benjamins Publishing Company
All rights reserved

	 Binocular rivalry, brain stimulation and bipolar disorder	 243

methods previously used in attention and rivalry studies (e.g., Kamphuisen et al., 
2008; Srinivasan, Russell, Edelman, & Tononi, 1999; Vialatte, Maurice, Dauwels, & 
Cichocki, 2010), and is continuing with a range of other neurophysiological and 
genetic methods (A. Paulk & B. van Swinderen, personal communication). Rivalry 
experiments have also recently been extended to mice (Zhang et al., 2012), thus 
providing further scope for probing the phenomenon from genetic through to 
systems levels.

Concluding remarks

In this chapter we have discussed the point-counterpoint nature of mechanistic 
rivalry research, and the high-, low- and multi-level processing engaged by the 
phenomenon. We discussed the genesis and status of one proposal in particular, 
the IHS model. On this background we reviewed brain stimulation approaches 
to studying rivalry, including CVS and TMS, noting that these methods too have 
yielded conflicting results, but that they also offer the potential for further mecha-
nistic clarification. We have argued that the IHS model has yet to be conclusively 
verified or falsified and that it is one which is readily amenable to examination 
with electrophysiological, brain-imaging and brain stimulation approaches. 
Finally, we have outlined the links between the IHS model and the finding of slow 
BR in BD, and have described current and future research aimed at elucidating 
genetic and molecular aspects of both rivalry and BD. The renewed fascination 
with rivalry mechanisms looks set to grow and spread further to clinical, genetic 
and new comparative contexts.
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